Introduction to Scilab

Kannan M. Moudgalya IIT Bombay
www.moudgalya.org
kannan@iitb.ac.in

Scilab Workshop
Bhaskaracharya Pratishtana
4 July 2009

Outline

- Software engineering
- Implication to scientific computations
- Scilab as a possible solution
- Scilab - a tutorial introduction
- Simple arithmetic
- Matrix operations
- Vector arithmetic
- Conditionals
- Plots
- Installation

Software - Bottleneck

- In the past 40 years hardware technology advanced more than 1,000 times
- Software technology about same - people take same time to write programs as before - perhaps twice or thrice faster, with good editors, etc.
- Productivity: 5 lines/man day at IBM with 1 error/mloc (million lines of code)
- The above includes testing, debugging and documentation
- Such a low productivity with sophisticated software tools and that too by experienced programmers
- Others will produce even less

Shortcomings in Science Education

- Scientists and engineers often have no formal course in programming
- Perhaps one course mainly Fortran, perhaps some C
- Objective: to solve engineering problems. Good programming is not a must
- Computer science departments do not spend much time on numerical programming (e.g. does not teach Fortran)
- Shortage of computer scientists
- Scientists and engineers teach programming to their students
- Many of them would have had no formal course in programming

Gap between Computer Scientists and Engineers

- Numerical software is not of interest to computer scientists
- Computers scientists do not carry out numerical simulations
- Their programs work mostly with characters - may be integers
- This, combined with shortcomings in science education, as mentioned in the last slide, makes scientific computations a difficult problem

Idea to Implementation

- R\&D Stage: Evaluation of ideas
- Need rapid idea testing workbench
- Come up with idea
loop
Test it
Modify it end loop
- When idea works, go to production phase:
- Convert code for repeated use
- Use code repeatedly
- Need efficient code

College Education = Idea Testing

- College teaches new things
- Extensive idea testing phase
- Need a tool for idea testing
- Performance of code often does not matter
- Scilab fits the bill

Applied Research Institutions

- High productivity platform for idea testing
- Developing efficient code for tested ideas
- Scilab is one such tool

Scilab

- Environment for numerical computer applications
- Good mathematical library in compiled C code
- Interpreted high level language
- High productivity tool
- Can work with Fortran, C: Transition to production phase possible
- Good graphics capability
- Large installed base
- A lot of algorithms implemented in interpreted language as well
- Free
- Check out www.scilab.org or www.scilab.in

History of Scilab

- Idea of Cleve Moler, CS Prof. New Mexico State University
- Was in Linpack, Eispack (robust algorithms) projects
- NSF sponsored project to develop Matlab in Fortran - Free
- Many companies started using this idea
- Matrix ${ }_{x}$
- CTRL-C
- Matlab
- Scilab
- Used extensively for linear algebra, simulation, control system design

Mathematical Library

- Special functions
- Bessel
- Gamma
- Error function
- Elliptic integral
- Polynomials
- Characteristic polynomial
- Roots
- Multiplication
- Division
- Curve fitting
- Matrix condition
- Condition number
- $1,2, F$ and ∞ norms
- rank

Mathematical Library - Continued

- Matrix functions
- Exponential
- Powers
- Log
- Square root
- Decomposition \& factorisation
- LU
- QR
- SVD
- Cholesky
- Schur
- Inverse
- Signal processing
- FFT, FFT2, IFFT, IFFT2
- Convolution
- Deconvolution
- Correlation coefficient

Scilab's Language

- C like langugae
- Control flow
- if
- while
- select
- break
- Procedures
- Scripts
- Functions
- Other features
- Diary
- Can call C and Fortran programs

Features of Scilab

- Scilab is made up of three distinct parts:
- An interpreter
- Libraries of functions (Scilab procedures)
- Libraries of Fortran and C routines
- It includes hundreds of mathematical functions with the possibility to interactively add programs from various languages (C, Fortran).
- It has sophisticated data structures including lists, polynomials, rational functions, linear systems, etc.

How to Download Scilab?

- Scilab can be downloaded from ftp://ftp.iitb.ac.in/misc_packages/Scilab/
- The website of Scilab is www.scilab.org
- It is distributed in source code format.
- Binaries for Windows95/NT, Unix/Linux/Mac OS/X are also available. All the binary versions include tk/tcl interface.

Usage of Scilab

Kannan Moudgalya

Simple Arithmetic - 1

```
4+6+12
    ans =
        22.
a = 4, b = 6; c = 12
    a =
        4 .
    C =
        12.
a+b+c
ans=
    22. 22.
```


Useful Commands

- demos
- Gives demos on several different things
- apropos
- Helps locate commands associated with a word
- help
- functional invocation with no arguments
- Helps draw plots
- diary
- Stores all commands and resulting outputs

Simple Arithmetic \& Display

$$
\begin{aligned}
& \mathrm{a}=4 ; \mathrm{b}=6 ; \mathrm{c}=12 \\
& \mathrm{~d}=\mathrm{a}+\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}= \\
& 22 \\
& \mathrm{~d}=\mathrm{a}+\mathrm{b}+\mathrm{c} \\
& \mathrm{~d} \\
& \mathrm{~d} \\
& \mathrm{~d}=
\end{aligned}
$$

$$
22
$$

Simple Arithmetic

```
    format('v',10)
    e = 1/30
e =
    0.0333333
format('v',20)
    e
e =
        0.03333333333333333
format('e',20)
    e
e =
    3.3333333333333E-02
```


Simple Arithmetic

```
format('v',10)
x = sqrt(2)/2, y = asin(x)
    x =
    0.7071068
    y =
    0.7853982
y_deg = y * 180 /%pi
y_deg =
45.
```


Rounding, Truncation, etc.

$$
\begin{aligned}
& x=2.6, y 1=f i x(x), y 2=f l o o r(x), y 3=\operatorname{ceil}(x), \ldots \\
& \text { y4 }=\text { round (} x \text {) } \\
& \mathrm{x}= \\
& 2.6 \\
& \text { y1 = } \\
& 2 . \\
& \text { y2 = } \\
& 2 . \\
& \text { y3 = } \\
& 3 . \\
& \text { y4 = }
\end{aligned}
$$

Different Ways to Specify a List

The following three commands produce identical result:

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{lllll}
0 & .1 * \% \mathrm{pi} & .2 * \% \mathrm{pi} & .3 * \% \mathrm{pi} & .4 * \% \mathrm{pi} \\
.7 * \% \mathrm{pi} & .8 * \% \mathrm{pi} & .9 * \% \mathrm{pi} & \% \mathrm{pi}] ; \\
\mathrm{x}=(0: 0.1: 1) * \% \mathrm{pi} \\
\mathrm{x}= & \text { linspace }(0, \% \mathrm{pi}, 11)
\end{array}\right. \\
&
\end{aligned}
$$

Vector Operation - 1

```
-->x = (0:0.1:1)*%pi;
-->y = sin(x)
    y =
        column 1 to 6
! 0. 0.3090170 .5877853 0.8090170 0.9510565 1.!
    column 7 to 11
! 0.9510565 0.8090170 0.5877853 0.3090170 1.225E-16 !
-->y(5)
```

ans =
0.9510565

Vector Operation - 2

$$
-->a=1: 5, b=1: 2: 9
$$

$$
c=
$$

$$
\text { ! 1. 3. 5. 7. 9. 1. } 3 . \quad \text { 3. } 4 . \quad \text { 5. ! }
$$

$$
-->d=[b(1: 2: 5) \quad 1 \quad 0 \quad 1]
$$

$$
\mathrm{d}=
$$

$$
1 .
$$

5.
6. 7.
1.
2. !

$$
\begin{aligned}
& \mathrm{a}= \\
& \text { ! 1. 2. 3. 4. 5. ! } \\
& \text { b = } \\
& \text { ! 1. 3. 5. 7. 9. ! } \\
& -->c=\left[\begin{array}{ll}
b & a
\end{array}\right]
\end{aligned}
$$

Vector Operation - 3

$$
-->a, b
$$

$$
!-1 . \quad 0 . \quad 1 . \quad 2 . \quad 3 .!
$$

$$
-->2 * a-b
$$

ans =

$$
\begin{array}{llllll}
! & 1 . & 1 . & 1 . & 1 . & 1 .
\end{array}
$$

$$
\begin{aligned}
& \mathrm{a}= \\
& \text { ! } 1 \text {. } \\
& 2 . \\
& 3 . \\
& 4 . \\
& \text { 5. ! } \\
& \mathrm{b}= \\
& \text { ! } 1 \text {. } \\
& 3 . \\
& 5 . \\
& 7 . \\
& \text { 9. ! } \\
& -->a-2 \\
& \text { ans = }
\end{aligned}
$$

Vector Operation - 5

$$
-->a
$$

$$
-->a \cdot{ }^{\wedge} 2
$$

$$
\text { ans }=
$$

$$
!\quad 1
$$

$$
4 .
$$

$$
\text { 9. } \quad 16 .
$$

25. !

$$
-->a \cdot{ }^{\wedge} a
$$

ans =

$$
!\quad 1
$$

$$
4
$$

$$
27
$$

$$
256
$$

$$
\begin{aligned}
& \mathrm{a}= \\
& \text { ! } 1 \text {. } \\
& 2 . \\
& 3 . \\
& 4 . \\
& \text { 5. ! }
\end{aligned}
$$

Vector Operation - 6

$-->a, b$

ans =

$!$	1.	0.6666667	0.6	0.5714286	0.5555556 !

$-->b . \backslash a$
ans =
! 1 .
0.6666667
0.6
0.5714286
0.5555556

Vector Operation - 7

$$
-->a, \quad b
$$

$$
\begin{aligned}
& \mathrm{a}= \\
& \text { ! } 1 \text {. } \\
& 2 . \\
& 3 . \\
& 4 . \\
& \text { 5. ! } \\
& \mathrm{b}= \\
& \text { ! } 1 \text {. } \\
& 3 . \\
& 5 . \\
& 7 . \\
& \text { 9. ! } \\
& -->a / b \\
& \text { ans = } \\
& 0.5757576
\end{aligned}
$$

Vector Operation - 8

$-->a, b$

$$
\begin{array}{lllll}
\mathrm{a}= \\
! & 1 . & 2 . & 3 . & 4 . \\
\mathrm{b} & = & & & 5 .! \\
! & 1 . & 3 . & 5 . & 7 . \\
->\mathrm{a} \backslash \mathrm{~b}
\end{array}
$$

ans	$=$					
$!$	0.	0.	0.	0.	0.	$!$
$!$	0.	0.	0.	0.	0.	$!$
$!$	0.	0.	0.	0.	0.	$!$
$!$	0.	0.	0.	0.	0.	$!$
$!$	0.2	0.6	1.	1.4	1.8	$!$

Machine Epsilon

-->num=0; EPS=1;
-->while (1+EPS)>1
--> EPS = EPS/2;
--> num = num+1;
-->end
-->num
num = 53.
$-->E P S=2 * E P S$

EPS =

$$
2.220 \mathrm{E}-16
$$

Logical Operators

$==$	equal to
$<$	less than
$>$	greater than
$<=$	less than or equal to
$>=$	greater than or equal to
$<>$ or $\sim=$	not equal to

Use of Machine Epsilon

$-->x=(-2: 2) / 3$
$\mathrm{x}=$
! - 0.6666667-0.3333333 0. 0.3333333 0.6666667!
-->sin(x)./x

```
    !--error 27
division by zero...
```


Use of Machine Epsilon

$-->x=x+(x==0) * \% e p s$
$\mathrm{x}=$
$!-0.6666667-0.3333333 \quad 2.22 \mathrm{E}-16 \quad 0.33333330 .6666667$!
$-->\sin (x) . / x$
ans =
$\begin{array}{lllll}! & 0.9275547 & 0.9815841 & 1 . & 0.9815841\end{array}$

Vector Operations Using Logical Operators

$$
-->A=1: 9, B=9-A
$$

$\mathrm{A}=$									
$!$	1.	2.	3.	4.	5.	6.	7.	8.	$9 .!$
B	$=$								
$!$	8.	7.	6.	5.	4.	3.	2.	1.	$0 .!$
-->tf $=A==B$									

tf =
! F F F F F F F F F !
-->tf = A>B
tf =
! F F F F T T T T T !

Kannan Moudgalya

Transpose

$$
\begin{aligned}
& -->c=[1 ; 2 ; 3] \\
& \text { C }= \\
& \text { ! 1.! } \\
& \text { ! 2. ! } \\
& \text { ! 3.! } \\
& -->a=1: 3 \\
& \mathrm{a}= \\
& \text { ! } 1 \text {. } \\
& 2 . \\
& \text { 3. ! } \\
& -->b=a{ }^{\prime} \\
& \text { b = } \\
& \text { ! 1. ! } \\
& \text { ! 2.! } \\
& \text { ! 3. ! }
\end{aligned}
$$

Submatrix

$$
\begin{aligned}
& -->A=\left[\begin{array}{llllll}
1 & 2 & 3 ; 4 & 5 & 6 ; 7 & 8
\end{array}\right] \\
& \mathrm{A}= \\
& ! \\
& ! \\
& ! \\
& ! \\
& ! \\
& \\
& \\
& \text { 4. }
\end{aligned}
$$

Submatrix

A

$$
\mathrm{A}=
$$

| $!$ | 1. | 2. | 3. ! |
| :--- | :--- | :--- | :--- | :--- |
| $!$ | 4. | 5. | 6. ! |
| $!$ | 7. | 8. | 0. ! |

$-->B=A(3:-1: 1,1: 3)$

B	$=$			
$!$	7.	8.	0.	$!$
$!$	4.	5.	6.	$!$
$!$	1.	2.	3.	$!$

Submatrix

$-->A$

A	$=$			
$!$	1.	2.	3.	$!$
$!$	1.	4.	7.	$!$
$!$	7.	8.	0.	$!$

$-->B=A(:, 2)$

B	$=$	
$!$	2.	
$!$	4.	$!$
$!$	8.	$!$

Submatrix

$$
\begin{aligned}
& -->b=\left[\begin{array}{lll}
5 & -3 ; 2 & -4
\end{array}\right] \\
& \text { b = } \\
& \text { ! 5. - 3. ! } \\
& \text { ! 2. - 4. ! } \\
& -->x=a b s(b)>2 \\
& \text { X = } \\
& \text { ! T T ! } \\
& \text { ! F T ! } \\
& -->y=b(a b s(b)>2) \\
& \text { y = } \\
& \text { ! 5. ! } \\
& \text { ! - 3. ! } \\
& \text { ! - 4. ! }
\end{aligned}
$$

Special Matrices

-->zeros $(3,3)$

ans $=$			
$!$	0.	0.	$0 .!$
$!$	0.	0.	$0 .!$
$!$	0.	0.	$0 .!$

-->ones $(2,4)$

| ans $=$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $!$ | 1. | 1. | 1. | 1. ! |
| $!$ | 1. | 1. | 1. | 1. ! |

-->rand $(2,1)$
ans =
! 0.2113249 !
! 0.7560439 !

Kannan Moudgalya

Go for Vector Computation

Kannan Moudgalya

Go for Vector Computation

$-->a=\operatorname{ones}(10000,1) ;$
-->timer()
$\begin{aligned} & \text { ans }= \\ & 0.02\end{aligned}$
$-->$ for $i=1: 10000, b(i)=a(i)+a(i) ;$ end
-->timer()
ans =
0.31
$-->c=a+a ;$
-->timer()
ans =
0.03

Plots

Go through the Demos!
$1 \mathrm{t}=(0: 0.1: 6 * \% \mathrm{pi})$;
2 plot2d(t', sin(t)');
 4 xgrid();

${ }^{1}$ plot2d1（＇enl＇，1，（1：10：10000）＇）；
2 xtitle（＇plot2d1」logヶscale＇，＇t＇，＇yьュlogュscale＇）； xgrid（3）；

Kannan Moudgalya

1 subplot (2,2,1); plot3d(); 2 subplot (2,2,2); plot2d(); 3 subplot (2,2,3); histplot(); 4 subplot (2,2,4); grayplot ();

Title=['plot3d_: $_\mathrm{z}=\sin (\mathrm{x}) * \cos (\mathrm{y})$ ']; xtitle (Title, '」', '」');

Kannan Moudgalya

System requirements

- Source version
- Scilab requires approximately 130 MB of disk storage to unpack and install (all sources included).
- Also, X Window (X11R4, X11R5 or X11R6), C and Fortran compilers are needed.
- Binary version
- The minimum requirement for running Scilab (without sources) is about 40 MB when decompressed.
- Being partially and statically linked, these versions do not require a Fortran compiler.

How to install Scilab?

- Windows
- Download scilab-4.1.exe
- Click this file and follow the instructions
- Launch from its icon on the Desktop.
- Linux
- Download scilab-4.1.bin.linux-i686.tar.gz
- Issue the following commands
- tar zxvf scilab-4.1.bin.linux-i686.tar.gz
- cd scilab-4.1
- make
- The binary is at bin/scilab

Conclusions

- Scilab is ideal for educational institutions, including schools
- Built on a sound numerical platform
- It is free
- Also suitable for industrial applications
- Standard tradeoff between free and commercial applications

Thank you

Kannan Moudgalya

