Scilab

Manjusha S. Joshi

manjusha.joshi@gmail.com
Bhaskaracharya Pratishthana,
Research Institute in Mathematics, Pune, India
July 13, 2009

Page 1 of 30

Full Screen

Close

1. Graphics

Home Page
Let us start with simple graphics command
--t=-\%pi:0.1:\%pi;
--size(t)
ans =

1. 63.

--plot(sin(t))
t is a vector given. We check size of the vector with size command.

Title Page

Page 2 of 30

Go Back

Full Screen

Home Page

Title Page

Page 3 of 30

Go Back

Full Screen

Close

Try some known graphs:

- $\cos (x)$
- x^{2}
- $\exp (x)$

Title Page

4

Page 4 of 30

Full Screen

Close

$$
y=3 x^{2}+x \sin x
$$

Home Page

Title Page

44

Page 5 of 30

Go Back

Full Screen

Close

Try with Help:

- $\operatorname{plot} 2 \mathrm{~d}(\mathrm{x}, \mathrm{y})$
- fplot2d (x,f)
- subplot: Multiple graphs
- xgrid :
- xtitle :
- xclear : Clears one or more windows
- clf() : Clears the grpahic window

Go Back

- xbasc: Clears graphic window and erase recorded graphics

Points to note

- Choice of good interval for the graph is imporatant.
- Smoothness of the graph changes with number of points cosdiered in the given interval. Always check size of the vector you are using for plotting.

Page 8 of 30

Go Back

Full Screen

Close

Quit

- Also check for zeros of the function and make sure that you want to include it in the interval or exclude it.
- Before drawing check what you have asked to draw.
- You will be happy to see the figure which you already thought.

Title Page

Page 9 of 30

2. Plotting functions of two variables

To obtain 3-D figure for the equation $z=x^{4}-y^{4}$. Note that command fplot3d has arguments as x, y and the function f.

Title Page

44

Page 10 of 30
$--\operatorname{deff}(' z=f(x, y)$, ' $z=x \wedge 4-y \wedge 4 ')$
$--x=-3: 0.2: 3$; $y=x$;
Go Back

Full Screen
--clf() ;fplot3d(x,y,f)

Close

$--\operatorname{deff}(' z=f(x, y)$ ', 'z=x^3-y^3')
Warning :redefining function: f
$--x=-3: 0.2: 3 ; y=x$;
--clf() ;fplot3d(x,y,f)

Title Page

44

Page 12 of 30

Go Back

Full Screen

Close

$$
z=\sin \left(x^{2}\right)-y^{2}
$$

--deff('z=f(x,y)', 'z=sin($\left.\left.x^{\wedge} 2\right)-y^{\wedge} 2^{\prime}\right)$
Warning :redefining function: f
$--x=-3: 0.2: 3 ; y=x$;
--clf() ;fplot3d(x,y,f)

Graphics
Vector Field

Home Page

Title Page

Page 14 of 30

Go Back

Full Screen

3. Graph Titles

We can label X-axis, Y-axis and assign title for the graph:
--xlabel('X');

Home Page

Title Page

Page 16 of 30
--ylabel(' Y-axis');

Full Screen

--xtitle(' Graph of $\left.\sin (x)^{\prime}\right)$;
--plot(sin(x))

4. Multiple Graphs

We want to compare some graphs. With same set of points. In that case, we can have more than one graph at a time.
> $\mathrm{x}=-2$:.01:2
$>y=x .{ }^{\wedge} 3$
$>z=x .{ }^{\wedge} 5$
$>\mathrm{W}=\sin (\mathrm{x})$
Go Back
$>\operatorname{plot}(x, y, x, z, x, w)$
Observe the ooccurrenceof x for each of the function in the plot command.

Title Page
44

Page 17 of 30

5. Identify Graphs

Though, there are different colours for each graph, since there are more than one graph in one graph window. We would like to know which graphs goes

Title Page
44

4

Page 18 of 30

Go Back

Full Screen

Close

Quit

6. Vector Field

To plot vector field of

$$
F(x, y)=x \overrightarrow{\boldsymbol{i}}+\left(x^{2}+y^{2}\right) \overrightarrow{\boldsymbol{j}}
$$

Note that coefficient function of $\overrightarrow{\boldsymbol{i}}$ is x. Coefficient function of $\overrightarrow{\boldsymbol{j}}$ is $x^{2}+y^{2}$. To define these function use deff the Scilab keyword.

Title Page

Page 19 of 30

Go Back

Full Screen

Close

Graphics
Vector Field

Home Page
-- $\operatorname{deff}('[v x]=f x(x, y)$ ', 'vx=x')
--- $\operatorname{deff}('[v y]=f y(x, y)$ ', 'vy=x^2+y^2')

Title Page
44

Page 20 of 30

Home Page

Define vector x and y.
> $\mathrm{x}=$ linspace $(-2,11,11)$;
$>y=1$ inspace $(-2,11,11)$;

Title Page
44

Page 21 of 30

Evaulate $f x$ and $f y$ at values of x and y. For each of x there will be y. So there will be 11×11 order pairs of (x, y)
Evaluate $(f x, f y)$ for all order pairs of x and y. vx=feval ($x, y, f x$);
vy=feval($x, y, f y$);

Title Page

44
\square

Page 22 of 30

Now function $v x$ calculated at each grid point (x, y) same with function $v y$.

Home Page

With the command champ actual plotting of vector field
$>$ champ ($x, y, v x, v y$)
Plots grid points and then plots points calculated at those grid points for function $v x$ and $v y$. champ joins it as a vector. Initial point of a vector is grid point and direction can be shown with the calculated point.

Title Page
44

Page 23 of 30

Graphics
Vector Field

Home Page

6.1. Full code

$--\operatorname{deff}('[v x]=f x(x, y)$ ', 'vx=x')
--deff('[vx]=fy (x,y)','vy=x^2+y^2')
--vx=feval(x,y,fx);
--vy=feval(x,y,fy);
--champ (x,y,vx, vy)

Title Page
44

Page 24 of 30

Go Back

Graphics
Vector Field

Home Page

Title Page
44 $>$

Page 25 of 30

Go Back

Full Screen

Close

Try:

1. $F(x, y)=y^{2} \vec{i}+(x / 10) \vec{j}$ in the rectangle $0<x<2,1<y<2$. $y<2.5$.
2. $F=\sin (x y) \vec{i}+(x-y) \vec{j}$ with $0<x<2.5,1<$

Graphics
Vector Field

Home Page

Title Page

Title Page
\square
"
\square
Page 26 of 30
3. $F(x, y)=x y \vec{i}+\cos (x y) \vec{j}$.

Graphics

Vector Field

Home Page

Title Page
44

Page 27 of 30

Go Back

Full Screen

Close

7. Use scilab figures in LATEX

 file menu 'export'.From graphics window of scilab, choose option form

Graphics

Vector Field

Home Page

Graphic window number 0

Title Page
File Tools Edit ?
New figure...

In ATEX use commnad
Make sure the path of the figure file given correctly. Use pdflatex to convert hrm{E}}\mathrm{X}\)filetopdf.Makesurethatyouhaveincludegraphicspackageinthepreamble(before\backslashbegin\{document\})ofyour$\mathrm{TEX}_{\mathrm{E}}$file.\usepackage\{graphicx\}undefined

Title Page
44

Page 29 of 30

Go Back

Full Screen

Close

Quit

Graphics
Vector Field

Home Page

Title Page

4

Page 30 of 30

Go Back

Full Screen

Close

