
Introduction to ODEs in Scilab

Aditya Sengupta

Indian Institute of Technology Bombay
apsengupta@iitb.ac.in

April 15th, 2010, Smt. Indira Gandhi College of Engineering

Scilab can be used to model and simulate a variety of systems,
such as:

1 Ordinary Differential Equations

2 Boundary Value Problems

3 Difference Equations

4 Differential Algebraic Equations

We will deal with Ordinary Differential Equations in this talk.

Aditya Sengupta, EE, IITB ODEs in Scilab

Scilab can be used to model and simulate a variety of systems,
such as:

1 Ordinary Differential Equations

2 Boundary Value Problems

3 Difference Equations

4 Differential Algebraic Equations

We will deal with Ordinary Differential Equations in this talk.

Aditya Sengupta, EE, IITB ODEs in Scilab

We will do two things:

1 Model the ODE in a way Scilab can understand.

2 Solve the system for a given set of initial values.

Aditya Sengupta, EE, IITB ODEs in Scilab

Modeling the system

We will model the system as a first-order equation:

ẏ = f (t, y)

Note: Scilab tools assume the differential equation to have been
written as first order system.
Some models are initially written in terms of higher-order
derivatives, but they can always be rewritten as first-order systems
by the introduction of additional variables

Aditya Sengupta, EE, IITB ODEs in Scilab

Modeling the system

We will model the system as a first-order equation:

ẏ = f (t, y)

Note: Scilab tools assume the differential equation to have been
written as first order system.
Some models are initially written in terms of higher-order
derivatives, but they can always be rewritten as first-order systems
by the introduction of additional variables

Aditya Sengupta, EE, IITB ODEs in Scilab

Modeling the system

We will model the system as a first-order equation:

ẏ = f (t, y)

Note: Scilab tools assume the differential equation to have been
written as first order system.
Some models are initially written in terms of higher-order
derivatives, but they can always be rewritten as first-order systems
by the introduction of additional variables

Aditya Sengupta, EE, IITB ODEs in Scilab

Example

Let us consider the simple system:

dx

dt
= sin(2t)

We can model this system using this code:

1 f u n c t i o n dx = f (t , x)
2 dx = s i n (2∗ t) ;
3 e nd f un c t i o n

Aditya Sengupta, EE, IITB ODEs in Scilab

Example

Let us consider the simple system:

dx

dt
= sin(2t)

We can model this system using this code:

1 f u n c t i o n dx = f (t , x)
2 dx = s i n (2∗ t) ;
3 e nd f un c t i o n

Aditya Sengupta, EE, IITB ODEs in Scilab

Solution

We know that the solution is supposed to be

x = −1

2
cos(2t) + c

where c is a constant that depends on the initial value of the
problem.

Aditya Sengupta, EE, IITB ODEs in Scilab

Depending on the initial value, the plot will look like this:

Aditya Sengupta, EE, IITB ODEs in Scilab

Solving an ODE in Scilab

The simulation tool we will use for solving ODEs in Scilab is the
ode function
The simplest calling sequence for ode is:

y=ode(y0, t0, t, f)

where y0 is the initial value at t0 and t contains the points in
time at which the solution is to be determined. f is the function
corresponding to

ẏ = f (t, y)

Aditya Sengupta, EE, IITB ODEs in Scilab

For our example, we will take the initial value to be y0 = -0.5 at
t0 = 0.
Let us evaluate the ODE from t = 0:0.1:5.
The code is:

1 t0 = 0
2 x0 = −0.5
3 t = 0 : 0 . 1 : 5 ;
4 x = ode (x0 , t0 , t , f) ;
5 p l o t 2d (t , x)

Aditya Sengupta, EE, IITB ODEs in Scilab

For our example, we will take the initial value to be y0 = -0.5 at
t0 = 0.
Let us evaluate the ODE from t = 0:0.1:5.
The code is:

1 t0 = 0
2 x0 = −0.5
3 t = 0 : 0 . 1 : 5 ;
4 x = ode (x0 , t0 , t , f) ;
5 p l o t 2d (t , x)

Aditya Sengupta, EE, IITB ODEs in Scilab

You should get a graph that looks like this:

Aditya Sengupta, EE, IITB ODEs in Scilab

Higher Order Derivatives

When we have ODEs formulated in terms of higher order
derivatives, we need to rewrite them as first-order systems. We do
this by using variables to fill in the intermediate order derivaties.
For example, let us consider the system:

d2y

dt2
= sin(2t)

whose one solution we can easily guess to be y = −(1/4)sin(2t)

Aditya Sengupta, EE, IITB ODEs in Scilab

Higher Order Derivatives

When we have ODEs formulated in terms of higher order
derivatives, we need to rewrite them as first-order systems. We do
this by using variables to fill in the intermediate order derivaties.
For example, let us consider the system:

d2y

dt2
= sin(2t)

whose one solution we can easily guess to be y = −(1/4)sin(2t)

Aditya Sengupta, EE, IITB ODEs in Scilab

We convert the second order equation into two first order
equations:

dy/dt = z

dz/dt = sin(2t)

Therefore, we have the ode in the form:

dx/dt = f (t, x)

where dx and x are vectors:

x = [z ; sin(2t)]

dx = [dy/dt; dz/dt]

We then proceed to replace z , dy/dt, and dz/dt with vector
components x(2), dx(1), and dx(2)

Aditya Sengupta, EE, IITB ODEs in Scilab

We convert the second order equation into two first order
equations:

dy/dt = z

dz/dt = sin(2t)

Therefore, we have the ode in the form:

dx/dt = f (t, x)

where dx and x are vectors:

x = [z ; sin(2t)]

dx = [dy/dt; dz/dt]

We then proceed to replace z , dy/dt, and dz/dt with vector
components x(2), dx(1), and dx(2)

Aditya Sengupta, EE, IITB ODEs in Scilab

We convert the second order equation into two first order
equations:

dy/dt = z

dz/dt = sin(2t)

Therefore, we have the ode in the form:

dx/dt = f (t, x)

where dx and x are vectors:

x = [z ; sin(2t)]

dx = [dy/dt; dz/dt]

We then proceed to replace z , dy/dt, and dz/dt with vector
components x(2), dx(1), and dx(2)

Aditya Sengupta, EE, IITB ODEs in Scilab

We model the system thus:

1 f u n c t i o n dx = f (t , x)
2 dx (1) = x (2)
3 dx (2) = s i n (2∗ t)
4 end f un c t i o n

and simulate the ODE thus:

1 t = 0 : 0 . 0 1 : 4 ∗ %pi ;
2
3 y=ode ([0 ; −1/2] , 0 , t , f) ;
4 // Note the impor tance o f g i v i n g c o r r e c t s t a r t i n g v a l u e s .

Try to put a l t e r n a t e s t a r t i n g v a l u e s and see the
d i f f e r e n c e .

5
6 p l o t 2d (t ’ , [y (1 , :) ’ y (2 , :) ’])
7 // The cu r ve i n b l a c k i s the f i n a l s o l u t i o n . The o th e r cu r v e

i s f o r i l l u s t r a t i o n − to show the i n t e rm e d i a t e s t ep .

Aditya Sengupta, EE, IITB ODEs in Scilab

We model the system thus:

1 f u n c t i o n dx = f (t , x)
2 dx (1) = x (2)
3 dx (2) = s i n (2∗ t)
4 end f un c t i o n

and simulate the ODE thus:

1 t = 0 : 0 . 0 1 : 4 ∗ %pi ;
2
3 y=ode ([0 ; −1/2] , 0 , t , f) ;
4 // Note the impor tance o f g i v i n g c o r r e c t s t a r t i n g v a l u e s .

Try to put a l t e r n a t e s t a r t i n g v a l u e s and see the
d i f f e r e n c e .

5
6 p l o t 2d (t ’ , [y (1 , :) ’ y (2 , :) ’])
7 // The cu r ve i n b l a c k i s the f i n a l s o l u t i o n . The o th e r cu r v e

i s f o r i l l u s t r a t i o n − to show the i n t e rm e d i a t e s t ep .

Aditya Sengupta, EE, IITB ODEs in Scilab

Root Finding

Sometimes- we just want to simulate a differential equation up to
the time that a specific event occurs.
For example, an engine being revved until it reaches a particular
speed- after which the gear is to be changed.
For such circumstances, we need to define a quantity that signals
the occurance of the event.

Aditya Sengupta, EE, IITB ODEs in Scilab

Root Finding

Sometimes- we just want to simulate a differential equation up to
the time that a specific event occurs.
For example, an engine being revved until it reaches a particular
speed- after which the gear is to be changed.
For such circumstances, we need to define a quantity that signals
the occurance of the event.

Aditya Sengupta, EE, IITB ODEs in Scilab

Root Finding

Sometimes- we just want to simulate a differential equation up to
the time that a specific event occurs.
For example, an engine being revved until it reaches a particular
speed- after which the gear is to be changed.
For such circumstances, we need to define a quantity that signals
the occurance of the event.

Aditya Sengupta, EE, IITB ODEs in Scilab

In Scilab we use the ode root function, which is called thus:

[y, rd] = ode("root", y0, t0, t, f, ng, g)

where g is a function that becomes zero valued when the
constraining event occurs and ng is the size of g.
rd is a vector that contains the stopping time as its first element.

Aditya Sengupta, EE, IITB ODEs in Scilab

In Scilab we use the ode root function, which is called thus:

[y, rd] = ode("root", y0, t0, t, f, ng, g)

where g is a function that becomes zero valued when the
constraining event occurs and ng is the size of g.
rd is a vector that contains the stopping time as its first element.

Aditya Sengupta, EE, IITB ODEs in Scilab

Example

Let us consider the example of the engine that is revved. We wish
to constrain the revving of the engine till it reaches a certain point.
We build a first order approximation of an engine using the
following code (call it engine.sci):

1 f u n c t i o n d_revs = engine (t , revs)
2 d_revs = %eˆ(−revs)
3 end f un c t i o n

We can simulate the behaviour of the engine when it is
unconstrained using the following code:

1 exec engine . sci
2 revs = ode (0 , 0 , 0 : 0 . 1 : 1 0 , engine) ;
3 p l o t 2d (0 : 0 . 1 : 1 0 , revs)

Aditya Sengupta, EE, IITB ODEs in Scilab

Example

Let us consider the example of the engine that is revved. We wish
to constrain the revving of the engine till it reaches a certain point.
We build a first order approximation of an engine using the
following code (call it engine.sci):

1 f u n c t i o n d_revs = engine (t , revs)
2 d_revs = %eˆ(−revs)
3 end f un c t i o n

We can simulate the behaviour of the engine when it is
unconstrained using the following code:

1 exec engine . sci
2 revs = ode (0 , 0 , 0 : 0 . 1 : 1 0 , engine) ;
3 p l o t 2d (0 : 0 . 1 : 1 0 , revs)

Aditya Sengupta, EE, IITB ODEs in Scilab

Example

Let us consider the example of the engine that is revved. We wish
to constrain the revving of the engine till it reaches a certain point.
We build a first order approximation of an engine using the
following code (call it engine.sci):

1 f u n c t i o n d_revs = engine (t , revs)
2 d_revs = %eˆ(−revs)
3 end f un c t i o n

We can simulate the behaviour of the engine when it is
unconstrained using the following code:

1 exec engine . sci
2 revs = ode (0 , 0 , 0 : 0 . 1 : 1 0 , engine) ;
3 p l o t 2d (0 : 0 . 1 : 1 0 , revs)

Aditya Sengupta, EE, IITB ODEs in Scilab

We then write the constraining function (call it gearbox.sci):

1 f u n c t i o n stop = gearbox (t , revs)
2 stop = 1.5 − revs //We choose to s top the eng i n e when

the r e v s r each the v a l u e 1 .5 (You can choose any
o th e r v a l u e)

3 end f un c t i o n

We then simulate the behaviour of the engine when it is
constrained as above.

1 exec engine . sci
2 exec gearbox . sci
3 [revs , stop_time]= ode (” r oo t ” , 0 , 0 , 0 : 0 . 1 : 1 0 , engine , 1 ,

gearbox) ;
4 p l o t 2d ([0 : 0 . 1 : stop_time (1) , stop_time (1)] , revs)

Aditya Sengupta, EE, IITB ODEs in Scilab

We then write the constraining function (call it gearbox.sci):

1 f u n c t i o n stop = gearbox (t , revs)
2 stop = 1.5 − revs //We choose to s top the eng i n e when

the r e v s r each the v a l u e 1 .5 (You can choose any
o th e r v a l u e)

3 end f un c t i o n

We then simulate the behaviour of the engine when it is
constrained as above.

1 exec engine . sci
2 exec gearbox . sci
3 [revs , stop_time]= ode (” r oo t ” , 0 , 0 , 0 : 0 . 1 : 1 0 , engine , 1 ,

gearbox) ;
4 p l o t 2d ([0 : 0 . 1 : stop_time (1) , stop_time (1)] , revs)

Aditya Sengupta, EE, IITB ODEs in Scilab

Compare the two graphs- can you see where the simulation was
halted in the second case?

Aditya Sengupta, EE, IITB ODEs in Scilab

Linear Systems

Since they appear so often, there are special functions for modeling
and simulating linear systems.
For instance, you can create a linear system thus:

1 s = po l y (0 , ’ s ’)
2 sys = s y s l i n (’ c ’ , 1/(s+1))

and simulate it thus:

1 t = 0 : 0 . 1 : 1 0 ;
2 y = csim (’ s t e p ’ , t , sys) ;
3 p l o t 2d (t , y) ;
4
5 z = csim (s i n (5∗ t) , t , sys) ;
6 p l o t 2d (t , z) ;
7
8 bode (sys , 0 . 01 , 100) ;

Aditya Sengupta, EE, IITB ODEs in Scilab

Linear Systems

Since they appear so often, there are special functions for modeling
and simulating linear systems.
For instance, you can create a linear system thus:

1 s = po l y (0 , ’ s ’)
2 sys = s y s l i n (’ c ’ , 1/(s+1))

and simulate it thus:

1 t = 0 : 0 . 1 : 1 0 ;
2 y = csim (’ s t e p ’ , t , sys) ;
3 p l o t 2d (t , y) ;
4
5 z = csim (s i n (5∗ t) , t , sys) ;
6 p l o t 2d (t , z) ;
7
8 bode (sys , 0 . 01 , 100) ;

Aditya Sengupta, EE, IITB ODEs in Scilab

Now try to:

Model and simulate your own systems

Use the help command to find more options

Aditya Sengupta, EE, IITB ODEs in Scilab

Thanks

Aditya Sengupta, EE, IITB ODEs in Scilab

