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Scilab can be used to model and simulate a variety of systems,
such as:

1 Ordinary Differential Equations

2 Boundary Value Problems

3 Difference Equations

4 Differential Algebraic Equations

We will deal with Ordinary Differential Equations in this talk.
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We will do two things:

1 Model the ODE in a way Scilab can understand.

2 Solve the system for a given set of initial values.
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Modeling the system

We will model the system as a first-order equation:

ẏ = f (t, y)

Note: Scilab tools assume the differential equation to have been
written as first order system.
Some models are initially written in terms of higher-order
derivatives, but they can always be rewritten as first-order systems
by the introduction of additional variables

Aditya Sengupta, EE, IITB ODEs in Scilab



Modeling the system

We will model the system as a first-order equation:
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Example

Let us consider the simple system:

dx

dt
= sin(2t)

We can model this system using this code:

1 f u n c t i o n dx = f (t , x )
2 dx = s i n (2∗ t ) ;
3 e nd f un c t i o n
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Solution

We know that the solution is supposed to be

x = −1

2
cos(2t) + c

where c is a constant that depends on the initial value of the
problem.
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Depending on the initial value, the plot will look like this:
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Solving an ODE in Scilab

The simulation tool we will use for solving ODEs in Scilab is the
ode function
The simplest calling sequence for ode is:

y=ode(y0, t0, t, f)

where y0 is the initial value at t0 and t contains the points in
time at which the solution is to be determined. f is the function
corresponding to

ẏ = f (t, y)
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For our example, we will take the initial value to be y0 = -0.5 at
t0 = 0.
Let us evaluate the ODE from t = 0:0.1:5.
The code is:

1 t0 = 0
2 x0 = −0.5
3 t = 0 : 0 . 1 : 5 ;
4 x = ode ( x0 , t0 , t , f ) ;
5 p l o t 2d (t , x )
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You should get a graph that looks like this:
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Higher Order Derivatives

When we have ODEs formulated in terms of higher order
derivatives, we need to rewrite them as first-order systems. We do
this by using variables to fill in the intermediate order derivaties.
For example, let us consider the system:

d2y

dt2
= sin(2t)

whose one solution we can easily guess to be y = −(1/4)sin(2t)
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We convert the second order equation into two first order
equations:

dy/dt = z

dz/dt = sin(2t)

Therefore, we have the ode in the form:

dx/dt = f (t, x)

where dx and x are vectors:

x = [z ; sin(2t)]

dx = [dy/dt; dz/dt]

We then proceed to replace z , dy/dt, and dz/dt with vector
components x(2), dx(1), and dx(2)
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We model the system thus:

1 f u n c t i o n dx = f (t , x )
2 dx (1 ) = x (2 )
3 dx (2 ) = s i n (2∗ t )
4 end f un c t i o n

and simulate the ODE thus:

1 t = 0 : 0 . 0 1 : 4 ∗ %pi ;
2
3 y=ode ( [ 0 ; −1/2] , 0 , t , f ) ;
4 // Note the impor tance o f g i v i n g c o r r e c t s t a r t i n g v a l u e s .

Try to put a l t e r n a t e s t a r t i n g v a l u e s and see the
d i f f e r e n c e .

5
6 p l o t 2d (t ’ , [ y ( 1 , : ) ’ y (2 , : ) ’ ] )
7 // The cu r ve i n b l a c k i s the f i n a l s o l u t i o n . The o th e r cu r v e

i s f o r i l l u s t r a t i o n − to show the i n t e rm e d i a t e s t ep .
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Root Finding

Sometimes- we just want to simulate a differential equation up to
the time that a specific event occurs.
For example, an engine being revved until it reaches a particular
speed- after which the gear is to be changed.
For such circumstances, we need to define a quantity that signals
the occurance of the event.
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In Scilab we use the ode root function, which is called thus:

[y, rd] = ode("root", y0, t0, t, f, ng, g)

where g is a function that becomes zero valued when the
constraining event occurs and ng is the size of g.
rd is a vector that contains the stopping time as its first element.
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Example

Let us consider the example of the engine that is revved. We wish
to constrain the revving of the engine till it reaches a certain point.
We build a first order approximation of an engine using the
following code (call it engine.sci):

1 f u n c t i o n d_revs = engine (t , revs )
2 d_revs = %eˆ(−revs )
3 end f un c t i o n

We can simulate the behaviour of the engine when it is
unconstrained using the following code:

1 exec engine . sci
2 revs = ode (0 , 0 , 0 : 0 . 1 : 1 0 , engine ) ;
3 p l o t 2d ( 0 : 0 . 1 : 1 0 , revs )
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We then write the constraining function (call it gearbox.sci):

1 f u n c t i o n stop = gearbox (t , revs )
2 stop = 1.5 − revs //We choose to s top the eng i n e when

the r e v s r each the v a l u e 1 .5 (You can choose any
o th e r v a l u e )

3 end f un c t i o n

We then simulate the behaviour of the engine when it is
constrained as above.

1 exec engine . sci
2 exec gearbox . sci
3 [ revs , stop_time ]= ode ( ” r oo t ” , 0 , 0 , 0 : 0 . 1 : 1 0 , engine , 1 ,

gearbox ) ;
4 p l o t 2d ( [ 0 : 0 . 1 : stop_time (1 ) , stop_time (1 ) ] , revs )
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Compare the two graphs- can you see where the simulation was
halted in the second case?
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Linear Systems

Since they appear so often, there are special functions for modeling
and simulating linear systems.
For instance, you can create a linear system thus:

1 s = po l y (0 , ’ s ’ )
2 sys = s y s l i n ( ’ c ’ , 1/( s+1) )

and simulate it thus:

1 t = 0 : 0 . 1 : 1 0 ;
2 y = csim ( ’ s t e p ’ , t , sys ) ;
3 p l o t 2d (t , y ) ;
4
5 z = csim ( s i n (5∗ t ) , t , sys ) ;
6 p l o t 2d (t , z ) ;
7
8 bode ( sys , 0 . 01 , 100) ;
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Now try to:

Model and simulate your own systems

Use the help command to find more options
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Thanks
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