Scilab Manual for Radio Frequency Circuit Design by Prof Nandini Ammangi Electronics Engineering VESIT¹

Solutions provided by Nandan Hegde Electronics Engineering V.E.S.I.T/Mumbai

May 18, 2024

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Li	List of Scilab Solutions To plot frequency response of high frequency resistor	
1	To plot frequency response of high frequency resistor	5
2	To plot frequency response of high frequency capacitor	9
3	To plot frequency response of high frequency inductor	13
4	To plot SWR circle for an impedance	17
5	To plot efficiency of different types of amplifiers	21

List of Experiments

Solution 1.1	To plot frequency response of high frequency resistor	5
Solution 2.1	To plot frequency response of high frequency ca-	
	pacitor	9
Solution 3.1	To plot frequency response of high frequency induc-	
	tor	13
Solution 4.1	To plot SWR circle for an impedance	17
Solution 5.1	To plot efficiency of different types of amplifiers .	21

List of Figures

1.1 1.2	To plot frequency response of high frequency resistor To plot frequency response of high frequency resistor	6 7
	To plot frequency response of high frequency capacitor To plot frequency response of high frequency capacitor	10 11
	To plot frequency response of high frequency inductor To plot frequency response of high frequency inductor	14 15
	To plot SWR circle for an impedance	18 19
	To plot efficiency of different types of amplifiers	22 23
U. Z	TO PIOU CHICICHO OF CHICETON UNDES OF AIRPHILEIS	

To plot frequency response of high frequency resistor

Scilab code Solution 1.1 To plot frequency response of high frequency resistor

```
1 //To plot the frequency response of high frequency
      Resistor
2 //Scilab 5.4.1;64 bit (windows 8)
3 f = 10^4 : 10^5 : 10^10;
4 w = 2 * \%pi.*f;
5 \text{ mu0}=4*\%\text{pi}*10^-7;
6 1 = 2 * 2.5 * 10^{-2};
7 a=2.032*10^-4;
8 temp=log(2*1/a)/log(%e);
9 lex=mu0*l*(temp-1)/(2*%pi); //external inductance
10 r=2*10^3;
                                  // resistance
                                   //capacitance
11 c=5*10^-12;
12 z=w*lex*%i+1 ./(w*c*%i+1/r); //impedance
13 plot2d("gll",f,abs(z));
```


Figure 1.1: To plot frequency response of high frequency resistor

Figure 1.2: To plot frequency response of high frequency resistor

```
14 plot(f,r,"—");
15 title("Frequency Response Of High Frequency Resistor
        ");
16 xlabel('Frequency (f) in Hz');
17 ylabel('Absolute Impedance (|Z|) in ohms');
18 legend(["Real ";"Ideal"]);
```

To plot frequency response of high frequency capacitor

Scilab code Solution 2.1 To plot frequency response of high frequency capacitor

Figure 2.1: To plot frequency response of high frequency capacitor

Figure 2.2: To plot frequency response of high frequency capacitor

To plot frequency response of high frequency inductor

Scilab code Solution 3.1 To plot frequency response of high frequency inductor

```
1 //To plot frequency response of high frequency
      Inductor
2 //Scilab 5.4.1;64 bit (windows 8)
3 f = 10^7 : 10^8 : 10^10;
4 w = 2 * \%pi.*f;
5 N = 3.5;
                 //number of turns
6 rad=0.05*0.0254;
                       //length of wire
7 len=0.05*0.0254;
8 a=(5*0.0254*10^-3)/2;
9 u0=4*\%pi*10^-7;
10 sig_cu=64.516*10^6;
11 e0=8.854*10^-12;
12 l=(\%pi*rad^2*u0*(N^2))/len;
13 c=(e0*4*\%pi*rad*(N^2)*a)/len;
```


Figure 3.1: To plot frequency response of high frequency inductor

Figure 3.2: To plot frequency response of high frequency inductor

```
14 r=(2*rad*N)/(sig_cu*(a^2));
15 z=1 ./((1 ./(r+w*%i*1))+w*%i*c); //impedance
16 zideal=w*%i.*l; //impedance of an
         ideal inductor
17 plot2d("gll",f,abs(z));
18 plot(f,abs(zideal),"—");
19 title("Frequency Response Of High Frequency Inductor
         ");
20 xlabel('Frequency (f) in Hz');
21 ylabel('Absolute Impedance (|Z|) in ohms');
22 legend(["Real";"Ideal"]);
```

To plot SWR circle for an impedance

Scilab code Solution 4.1 To plot SWR circle for an impedance

```
//To plot SWR circle for the impedance
//Scilab 5.4.1;64 bit(windows 8)

Z0=50; //define 50 Ohm characteristic impedance

Z=[50 48.5 75+%i*25 10-%i*5]; //define impedances
    for this example

Gamma=(Z-Z0)./(Z+Z0) //compute corresponding
    reflection coefficients

SWR=(1+abs(Gamma))./(1-abs(Gamma)); //find the SWRs

a=0:0.01:2*%pi;
for n=1:length(Z)

plot(abs(Gamma(n))*cos(a),abs(Gamma(n))*sin(a),'b','
    linewidth',2);

plot(real(Gamma(n)), imag(Gamma(n)),'ro');
end;
```


Figure 4.1: To plot SWR circle for an impedance $\,$

Figure 4.2: To plot SWR circle for an impedance

```
13
14     for n=1:length(Z)
15         if n~=1
16         end;
17     end;
18     title("SWR Circles");
```

To plot efficiency of different types of amplifiers

Scilab code Solution 5.1 To plot efficiency of different types of amplifiers

```
//To plot efficiency of different types of
    amplifiers
//Scilab 5.4.1;64 bit(windows 8)
theta=(1:1:360)/180*%pi; //define conduction angle

//compute efficiency
nu=-1/2*(theta-sin(theta))./(theta.*cos(theta/2)-2*
    sin(theta/2));

plot(theta/%pi*180,nu*100,'r','linewidth',2);
set(gca(),"auto_clear","off");
plot([0 180],[%pi/4*100 %pi/4*100],'b:');
plot([180 180],[0 %pi/4*100],'b:');
plot(180,%pi/4*100,'bo');
plot(360,50,'bo');
```


Figure 5.1: To plot efficiency of different types of amplifiers

Figure 5.2: To plot efficiency of different types of amplifiers

```
14 mtlb_axis([0 360 50 100]);
15 title('Maximum theoretical efficiency of the amplifier');
16 xlabel('Conduction angle \Theta_0, deg.');
17 ylabel('Efficiency \eta, %');
```